Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Advances in Experimental Medicine and Biology ; 1413:vii, 2023.
Article in English | EMBASE | ID: covidwho-20239079
2.
Organs-on-a-Chip ; 5:100030, 2023.
Article in English | ScienceDirect | ID: covidwho-20230626

ABSTRACT

Disease models that can accurately recapitulate human pathophysiology during infection and clinical response to antiviral therapeutics are still lacking, which represents a major barrier in drug development. The emergence of human Organs-on-a-Chip that integrated microfluidics with three-dimensional (3D) cell culture, may become the potential solution for this urgent need. Human Organs-on-a-Chip aims to recapitulate human pathophysiology by incorporating tissue-relevant cell types and their microenvironment, such as dynamic fluid flow, mechanical cues, tissue–tissue interfaces, and immune cells to increase the predictive validity of in vitro experimental models. Human Organs-on-a-Chip has a broad range of potential applications in basic biomedical research, preclinical drug development, and personalized medicine. This review focuses on its use in the fields of virology and infectious diseases. We reviewed various types of human Organs-on-a-Chip-based viral infection models and their application in studying viral life cycle, pathogenesis, virus-host interaction, and drug responses to virus- and host-targeted therapies. We conclude by proposing challenges and future research avenues for leveraging this promising technology to prepare for future pandemics.

3.
TrAC - Trends in Analytical Chemistry ; 158 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2319236

ABSTRACT

Traditional Chinese medicine (TCM) has significant benefits in the prevention and treatment of diseases due to its unique theoretical system and research techniques. However, there are still key issues to be resolved in the full interpretation and use of TCM, such as vague active compounds and mechanism of action. Therefore, it is promising to promote the research on TCM through innovative strategies and advanced cutting-edge technologies. Microfluidic chips have provided controllable unique platforms for biomedical applications in TCM research with flexible composition and large-scale integration. In this review, the analysis and biomedical applications of microfluidics in the field of TCM are highlighted, including quality control of Chinese herbal medicines (CHMs), delivery of CHMs, evaluation of pharmacological activity as well as disease diagnosis. Finally, potential challenges and prospects of existing microfluidic technologies in the inheritance and innovation of TCM are discussed.Copyright © 2022 Elsevier B.V.

4.
Med Res Rev ; 2023 Apr 29.
Article in English | MEDLINE | ID: covidwho-2303733

ABSTRACT

The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.

5.
Journal of Drug Delivery Science and Technology ; 78 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2256446

ABSTRACT

Organ-on-a-chip is a three-dimensional microfluidic system that simulates the cellular structure and biological milieu of an organ, that seemed to be constructed and studied substantially in the last decade. Microchips can be configured to suit disease states in a variety of organs, including the lung. When contrasted to traditional in vitro models like monolayer cell lineages, lung-on-a-chip models lays out a pragmatic portrayal of disease pathophysiology and pharmaceuticals' mode of action, and this is especially more prevailing in connection with the COVID-19 pandemic. Animal models have typically been used in pharmaceutical drug screening to assess pharmacological and toxicological reactions to a new entity. These adaptations, on the other hand, do not precisely represent biological reactions in humans. Present and prospective uses of the lung-on-a-chip model in the pulmonary system are highlighted in this overview. In addition, the constraints of existing in vitro systems for respiratory disease simulation and therapeutic discovery would be emphasized. Attributes of lung-on-a-chip transformative features in biomedical applications will be addressed to illustrate the relevance of this lung-on-chip model for medical science.Copyright © 2022

6.
Biosens Bioelectron ; 219: 114772, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2239740

ABSTRACT

Creating a biomimetic in vitro lung model to recapitulate the infection and inflammatory reactions has been an important but challenging task for biomedical researchers. The 2D based cell culture models - culturing of lung epithelium - have long existed but lack multiple key physiological conditions, such as the involvement of different types of immune cells and the creation of connected lung models to study viral or bacterial infection between different individuals. Pioneers in organ-on-a-chip research have developed lung alveoli-on-a-chip and connected two lung chips with direct tubing and flow. Although this model provides a powerful tool for lung alveolar disease modeling, it still lacks interactions among immune cells, such as macrophages and monocytes, and the mimic of air flow and aerosol transmission between lung-chips is missing. Here, we report the development of an improved human lung physiological system (Lung-MPS) with both alveolar and pulmonary bronchial chambers that permits the integration of multiple immune cells into the system. We observed amplified inflammatory signals through the dynamic interactions among macrophages, epithelium, endothelium, and circulating monocytes. Furthermore, an integrated microdroplet/aerosol transmission system was fabricated and employed to study the propagation of pseudovirus particles containing microdroplets in integrated Lung-MPSs. Finally, a deep-learning algorithm was developed to characterize the activation of cells in this Lung-MPS. This Lung-MPS could provide an improved and more biomimetic sensory system for the study of COVID-19 and other high-risk infectious lung diseases.

7.
Eur J Pharm Sci ; 180: 106329, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2236107

ABSTRACT

Viral infectious diseases remain a global public health problem. The rapid and widespread spread of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV­2) has had a severe impact on the global economy and human activities, highlighting the vulnerability of humans to viral infectious diseases and the urgent need to develop new technologies and effective treatments. Organ-on-a-chip is an emerging technology for constructing the physiological and pathological microenvironment of human organs in vitro and has the advantages of portability, high throughput, low cost, and accurate simulation of the in vivo microenvironment. Indeed, organ-on-a-chip provides a low-cost alternative for investigating human organ physiology, organ diseases, toxicology, and drug efficacy. The lung is a main target organ of viral infection, and lung pathophysiology must be assessed after viral infection and treatment with antiviral drugs. This review introduces the construction of lung-on-a-chip and its related pathophysiological models, focusing on the in vitro simulation of viral infection and evaluation of antiviral drugs, providing a developmental direction for research and treatment of viral diseases.

8.
Front Pharmacol ; 13: 1033043, 2022.
Article in English | MEDLINE | ID: covidwho-2199111

ABSTRACT

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.

9.
Front Toxicol ; 4: 840606, 2022.
Article in English | MEDLINE | ID: covidwho-1933930

ABSTRACT

The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line (AXiAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment (AXlung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. AXiAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, AXiAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor ß1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that AXiAECs cultured on the AXlung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm2) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics.

10.
Tissue Eng Regen Med ; 18(5): 735-745, 2021 10.
Article in English | MEDLINE | ID: covidwho-1252276

ABSTRACT

BACKGROUND: Chronic respiratory diseases (CRD) are a major public health problem worldwide. In the current epidemiological context, CRD have received much interest when considering their correlation with greater susceptibility to SARS-Cov-2 and severe disease (COVID-19). Increasingly more studies have investigated pathophysiological interactions between CRD and COVID-19. AREA COVERED: Animal experimentation has decisively contributed to advancing our knowledge of CRD. Considering the increase in ethical restrictions in animal experimentation, researchers must focus on new experimental alternatives. Two-dimensional (2D) cell cultures have complemented animal models and significantly contributed to advancing research in the life sciences. However, 2D cell cultures have several limitations in studies of cellular interactions. Three-dimensional (3D) cell cultures represent a new and robust platform for studying complex biological processes and are a promising alternative in regenerative and translational medicine. EXPERT OPINION: Three-dimensional cell cultures are obtained by combining several types of cells in integrated and self-organized systems in a 3D structure. These 3D cell culture systems represent an efficient methodological approach in studies of pathophysiology and lung therapy. More recently, complex 3D culture systems, such as lung-on-a-chip, seek to mimic the physiology of a lung in vivo through a microsystem that simulates alveolar-capillary interactions and exposure to air. The present review introduces and discusses 3D lung cultures as robust platforms for studies of the pathophysiology of CRD and COVID-19 and the mechanisms that underlie interactions between CRD and COVID-19.


Subject(s)
COVID-19 , Animals , Cell Culture Techniques , Humans , Lung , SARS-CoV-2
11.
Micromachines (Basel) ; 12(5)2021 May 11.
Article in English | MEDLINE | ID: covidwho-1244071

ABSTRACT

Current in vitro models have significant limitations for new respiratory disease research and rapid drug repurposing. Lung on a chip (LOAC) technology offers a potential solution to these problems. However, these devices typically are fabricated from polydimethylsiloxane (PDMS), which has small hydrophobic molecule absorption, which hinders the application of this technology in drug repurposing for respiratory diseases. Off-stoichiometry thiol-ene (OSTE) is a promising alternative material class to PDMS. Therefore, this study aimed to test OSTE as an alternative material for LOAC prototype development and compare it to PDMS. We tested OSTE material for light transmission, small molecule absorption, inhibition of enzymatic reactions, membrane particle, and fluorescent dye absorption. Next, we microfabricated LOAC devices from PDMS and OSTE, functionalized with human umbilical vein endothelial cell (HUVEC) and A549 cell lines, and analyzed them with immunofluorescence. We demonstrated that compared to PDMS, OSTE has similar absorption of membrane particles and effect on enzymatic reactions, significantly lower small molecule absorption, and lower light transmission. Consequently, the immunofluorescence of OSTE LOAC was significantly impaired by OSTE optical properties. In conclusion, OSTE is a promising material for LOAC, but optical issues should be addressed in future LOAC prototypes to benefit from the material properties.

12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: covidwho-1214016

ABSTRACT

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Subject(s)
Lab-On-A-Chip Devices , Models, Biological , Pulmonary Alveoli/physiology , Alveolar Epithelial Cells , Antiviral Agents/pharmacology , Cigarette Smoking/adverse effects , Dimethylpolysiloxanes/chemistry , Gelatin/chemistry , Humans , Hydrogels/chemistry , Methacrylates/chemistry , Porosity , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , Respiration , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL